Pooling layers¶
-
class
lasagne.layers.
MaxPool1DLayer
(incoming, pool_size, stride=None, pad=0, ignore_border=True, **kwargs)[source]¶ 1D max-pooling layer
Performs 1D max-pooling over the trailing axis of a 3D input tensor.
Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
pool_size : integer or iterable
The length of the pooling region. If an iterable, it should have a single element.
stride : integer, iterable or
None
The stride between sucessive pooling regions. If
None
thenstride == pool_size
.pad : integer or iterable
The number of elements to be added to the input on each side. Must be less than stride.
ignore_border : bool
If
True
, partial pooling regions will be ignored. Must beTrue
ifpad != 0
.**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.Notes
The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each pooling region always corresponds to some element in the unpadded input region.
Using
ignore_border=False
prevents Theano from using cuDNN for the operation, so it will fall back to a slower implementation.
-
class
lasagne.layers.
MaxPool2DLayer
(incoming, pool_size, stride=None, pad=(0, 0), ignore_border=True, **kwargs)[source]¶ 2D max-pooling layer
Performs 2D max-pooling over the two trailing axes of a 4D input tensor.
Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
pool_size : integer or iterable
The length of the pooling region in each dimension. If an integer, it is promoted to a square pooling region. If an iterable, it should have two elements.
stride : integer, iterable or
None
The strides between sucessive pooling regions in each dimension. If
None
thenstride = pool_size
.pad : integer or iterable
Number of elements to be added on each side of the input in each dimension. Each value must be less than the corresponding stride.
ignore_border : bool
If
True
, partial pooling regions will be ignored. Must beTrue
ifpad != (0, 0)
.**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.Notes
The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each pooling region always corresponds to some element in the unpadded input region.
Using
ignore_border=False
prevents Theano from using cuDNN for the operation, so it will fall back to a slower implementation.
-
class
lasagne.layers.
Pool1DLayer
(incoming, pool_size, stride=None, pad=0, ignore_border=True, mode='max', **kwargs)[source]¶ 1D pooling layer
Performs 1D mean or max-pooling over the trailing axis of a 3D input tensor.
Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
pool_size : integer or iterable
The length of the pooling region. If an iterable, it should have a single element.
stride : integer, iterable or
None
The stride between sucessive pooling regions. If
None
thenstride == pool_size
.pad : integer or iterable
The number of elements to be added to the input on each side. Must be less than stride.
ignore_border : bool
If
True
, partial pooling regions will be ignored. Must beTrue
ifpad != 0
.mode : {‘max’, ‘average_inc_pad’, ‘average_exc_pad’}
Pooling mode: max-pooling or mean-pooling including/excluding zeros from partially padded pooling regions. Default is ‘max’.
**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.See also
MaxPool1DLayer
- Shortcut for max pooling layer.
Notes
The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each pooling region always corresponds to some element in the unpadded input region.
Using
ignore_border=False
prevents Theano from using cuDNN for the operation, so it will fall back to a slower implementation.
-
class
lasagne.layers.
Pool2DLayer
(incoming, pool_size, stride=None, pad=(0, 0), ignore_border=True, mode='max', **kwargs)[source]¶ 2D pooling layer
Performs 2D mean or max-pooling over the two trailing axes of a 4D input tensor.
Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
pool_size : integer or iterable
The length of the pooling region in each dimension. If an integer, it is promoted to a square pooling region. If an iterable, it should have two elements.
stride : integer, iterable or
None
The strides between sucessive pooling regions in each dimension. If
None
thenstride = pool_size
.pad : integer or iterable
Number of elements to be added on each side of the input in each dimension. Each value must be less than the corresponding stride.
ignore_border : bool
If
True
, partial pooling regions will be ignored. Must beTrue
ifpad != (0, 0)
.mode : {‘max’, ‘average_inc_pad’, ‘average_exc_pad’}
Pooling mode: max-pooling or mean-pooling including/excluding zeros from partially padded pooling regions. Default is ‘max’.
**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.See also
MaxPool2DLayer
- Shortcut for max pooling layer.
Notes
The value used to pad the input is chosen to be less than the minimum of the input, so that the output of each pooling region always corresponds to some element in the unpadded input region.
Using
ignore_border=False
prevents Theano from using cuDNN for the operation, so it will fall back to a slower implementation.
-
class
lasagne.layers.
Upscale1DLayer
(incoming, scale_factor, **kwargs)[source]¶ 1D upscaling layer
Performs 1D upscaling over the trailing axis of a 3D input tensor.
Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
scale_factor : integer or iterable
The scale factor. If an iterable, it should have one element.
**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.
-
class
lasagne.layers.
Upscale2DLayer
(incoming, scale_factor, **kwargs)[source]¶ 2D upscaling layer
Performs 2D upscaling over the two trailing axes of a 4D input tensor.
Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
scale_factor : integer or iterable
The scale factor in each dimension. If an integer, it is promoted to a square scale factor region. If an iterable, it should have two elements.
**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.
-
class
lasagne.layers.
GlobalPoolLayer
(incoming, pool_function=theano.tensor.mean, **kwargs)[source]¶ Global pooling layer
This layer pools globally across all trailing dimensions beyond the 2nd.
Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
pool_function : callable
the pooling function to use. This defaults to theano.tensor.mean (i.e. mean-pooling) and can be replaced by any other aggregation function.
**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.
-
class
lasagne.layers.
FeaturePoolLayer
(incoming, pool_size, axis=1, pool_function=theano.tensor.max, **kwargs)[source]¶ Feature pooling layer
This layer pools across a given axis of the input. By default this is axis 1, which corresponds to the feature axis for
DenseLayer
,Conv1DLayer
andConv2DLayer
. The layer can be used to implement maxout.Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
pool_size : integer
the size of the pooling regions, i.e. the number of features / feature maps to be pooled together.
axis : integer
the axis along which to pool. The default value of
1
works forDenseLayer
,Conv1DLayer
andConv2DLayer
.pool_function : callable
the pooling function to use. This defaults to theano.tensor.max (i.e. max-pooling) and can be replaced by any other aggregation function.
**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.Notes
This layer requires that the size of the axis along which it pools is a multiple of the pool size.
-
class
lasagne.layers.
FeatureWTALayer
(incoming, pool_size, axis=1, **kwargs)[source]¶ ‘Winner Take All’ layer
This layer performs ‘Winner Take All’ (WTA) across feature maps: zero out all but the maximal activation value within a region.
Parameters: incoming : a
Layer
instance or tupleThe layer feeding into this layer, or the expected input shape.
pool_size : integer
the number of feature maps per region.
axis : integer
the axis along which the regions are formed.
**kwargs
Any additional keyword arguments are passed to the
Layer
superclass.Notes
This layer requires that the size of the axis along which it groups units is a multiple of the pool size.